

NEW NAUTILUS EVO

VS

FULL CONCRETE SLAB

Numerical comparison

CO2 EMISSION REDUCTION -141.288 kg of CO2 EMISSIONS

The use of New Nautilus Evo in the slabs allowed for resizing the support columns and partitions, requiring a smaller quantity of both concrete and steel.

The overall comparison between a building with a solid slab and a lightened slab shows a total concrete requirement of 1.797,83 m3 for the full slab compared to 1.503,16 m3 for the lightened slab, resulting in a net saving of 294,67 m3 (-16,39%).

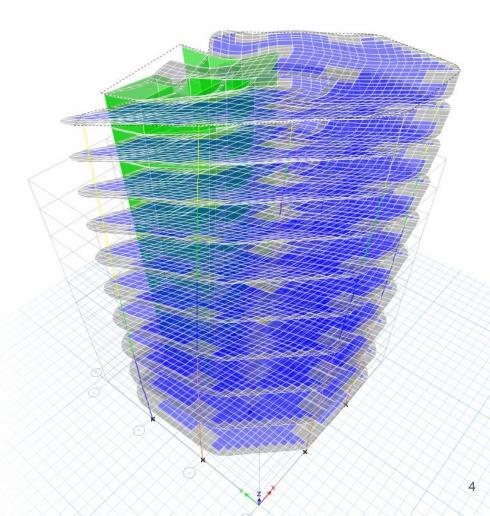
Regarding the steel, the amount decreased from 204,05 tonnes to 176,63 tonnes, indicating a reduction of 28 tonnes (-13,44%).

Viewing these data from a sustainability perspective, the use of the lightened slab prevented the release of 91.728 kg of CO2 into the atmosphere for the concrete and 49.560 kg for the reduced use of steel.

Overall, the design choice made by the designer prevented the release of 141.288 kg of CO2 into the atmosphere.

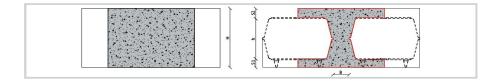
BUILDING MODEL: SUMMARY

	FULL	VOIDED	DIFF. %
Slab concrete [m ³ /m ²]	0.280	0.231	-17%
Slab steel [kg/m²]	19.67	16.01	-19%
Earthquake forces [kN]	37143	24120	-36%

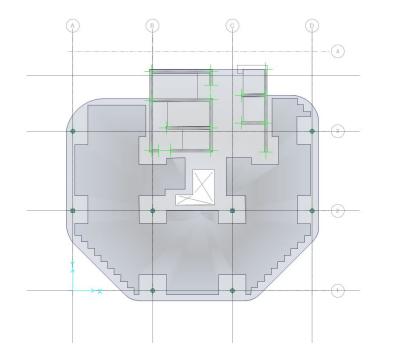

BUILDING DESCRIPTION

The comparison was conducted for two real 10-story buildings, each having:

- 496 m2 per story,
- 28 cm thick slabs,
- 8 x 8 m column span.


LOADS:

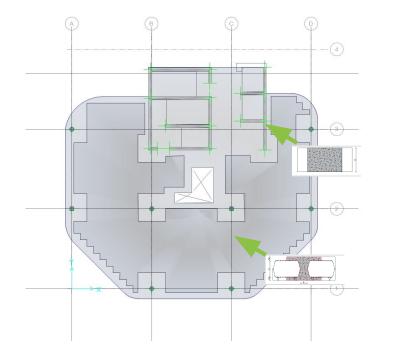
- Live load of 3 kN/m²,
- Permanent load of 2 kN/m².
- The columns were automatically designed by the software, which selects from a preassigned list.
- We selected one of the highest earthquake risk sites in Italy, near the city of Udine, with a ground peak acceleration of a_g = 0.257 g.


SLAB SECTION

		FULL SLAB	N. NAUTILUS EVO
Total thickness	H [mm]	280	280
Bottom slab thickness	S ₁ [mm]		60
Top slab thickness	S ₂ [mm]		60
Formwork used	N. Nautilus		Nautilus EVO H16
Formwork height	h [mm]		160
Rib width	B[mm]		140
Rib spacing	l [mm]		660
Full slab inertia	J [cm⁴/m]	182933	158844
Concrete consumption	C _{nau,m} [m ³ /m ²]	0.280	0.207
Slab self-weight	G _{k,FS} [kN/m²]	7.00	5.18

F.E.M. SLAB PARAMETERS

Inertia reduction -13.17


Shear reduction -40.23%

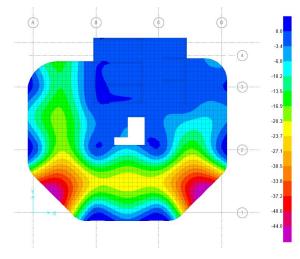
Weight reduction -26.07%

F.E.M. SLAB PARAMETERS

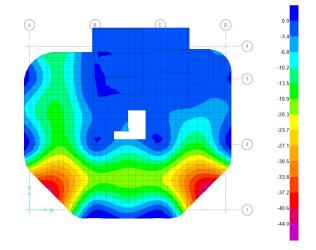
The F.E.M. slab can be modeled as a flat slab with different properties between voided zones and full ones:

FULL ZONE: (GREY)

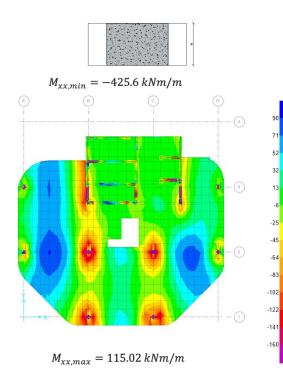
- $R_f = 1$
- $R_t = 1$ $R_s = 1$

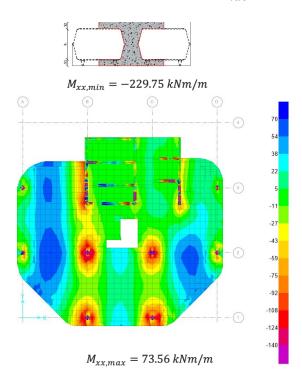

LIGHTENED ZONE (DARK GREY):

- $R_f = 0.87$
- $R_t = 0.93$
- $R_s = 0.60$ $R_{sw} = 0.74$

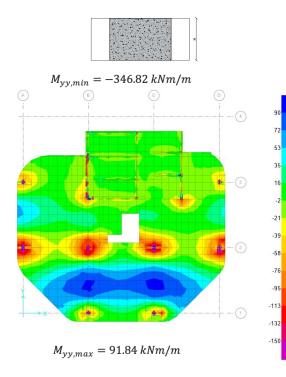

ANALYSIS SLAB RESULTS: LONG TERM DEFLECTION

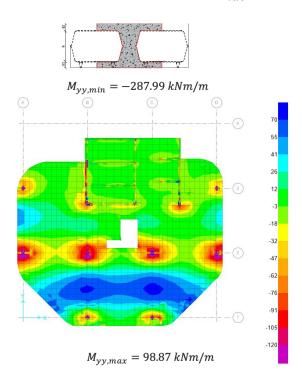
Full slab long term deflection: 49.76 mm





Voided slab long term deflection: 42.77 mm


ANALYSIS SLAB RESULTS: BENDING MOMENT $M_{_{\!X\!X}}$



ANALYSIS SLAB RESULTS: BENDING MOMENT $M_{_{\!X\!X}}$

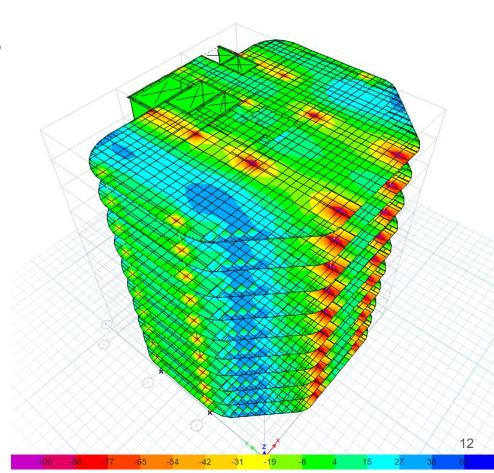
ANALYSIS SLAB RESULTS: STRESS SUMMARY

		FULL	VOIDED	DIFF. %	
Deflection	[mm]	49.76	42.77	-14%	

The deflection of voided slab is 14 % less than the full slab.

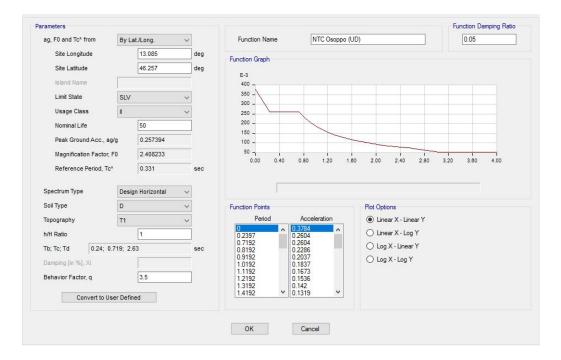
M _{xx} ⁺ [kNm] 115.02 73.56 M _{xx} ⁻ [kNm] -425.06 -229.75	F. %
	-36.05%
	-45.95%
	7.65%
M_{yy}^{+} [kNm] 91.84 98.87 M_{yy}^{-} [kNm] -346.82 -287.99	-16.96%

The average bending moment of voided slab is 17% less than the full slab section.

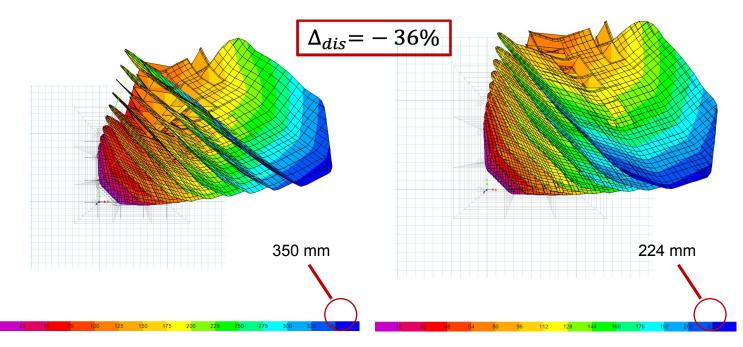

BUILDING MODEL: BASE REACTIONS

FULL		VOIDED	
Load Case/Combo	FZ	Load Case/Combo	FZ
Luau Case/Cumbu	kN	Load Case/Combo	kN
Dead	45097	Dead	30464
Live	13627	Live	13627
Sdead	9084	Sdead	9084
USL	93586	USL	73831

-26% only slab self weight


-32% of total self weight (shear wall+columns+slabs)

-21% of total combined loads 1.3 (self +permanent) +1.5 live



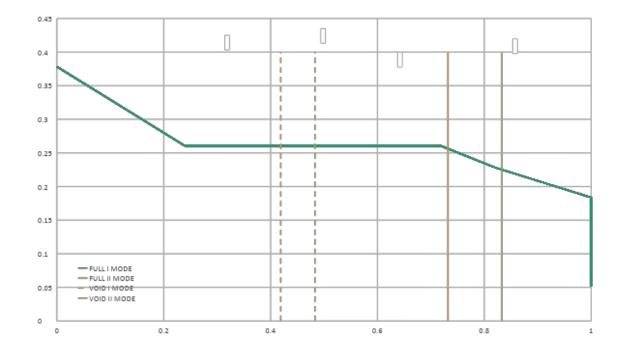
BUILDING MODEL: RESPONSE SPECTRUM

BUILDING MODEL: SEISMIC DISPLACEMENT COMPARISON

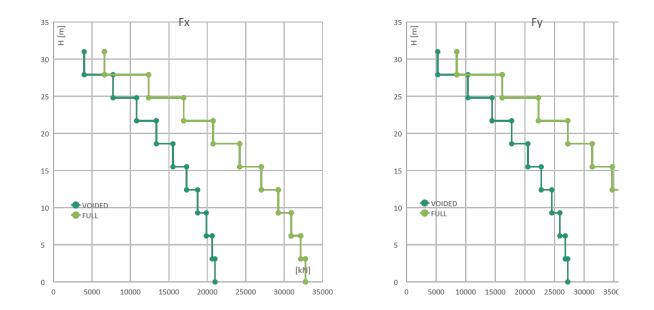
Full Slab Displacement [mm].

Voided Slab Displacement [mm].

BUILDING MODEL: MODAL PARTICIPATION MASS


FULL							
Case	Mode	Period	UX	UY	UZ	Sum UX	Sum LIY
Ouse	Mode	sec	ΟΛ	01	02	oum ox	oun or
Modal	1	0.83	0.50	0.00	0.00	0.50	0.00
Modal	2	0.48	0.00	0.68	0.00	0.50	0.68
Modal	3	0.34	0.15	0.00	0.00	0.66	0.68
Modal	4	0.22	0.15	0.00	0.00	0.80	0.68
Modal	5	0.11	0.01	0.11	0.00	0.81	0.79

VOIDED							
Case	Mode	Period	UX	UY	UZ	Sum UX	Sum LIV
Case	Mode	sec	07	01	02	Sum OX	Sun Or
Modal	1	0.732	0.49	0.00	0.00	0.49	0.00
Modal	2	0.419	0.00	0.68	0.00	0.49	0.68
Modal	3	0.306	0.17	0.00	0.00	0.66	0.68
Modal	4	0.192	0.14	0.00	0.00	0.80	0.68
Modal	5	0.098	0.00	0.15	0.00	0.80	0.83



BUILDING MODEL: MODE COMPARISON

BUILDING MODEL: STORY SHEAR FORCES

Average of seismic forces = -36%

Federico Minaldo Chief Engineering Officer, Geoplast federico.minaldo@geoplastglobal.com LinkedIn

NEW NAUTILUS CALCULATOR

NEW NAUTILUS EVO CALCULATOR

GeoplastGlobal.com

<u>LinkedIn</u>

NEW NAUTILUS EVO FEM CALCULATOR